TEACHING LLLMS TO UNDERSTAND CODE REPOSITO-
RIES USING SYNTHETIC KNOWLEDGE DATA

Red Hat AI Innovation Team
https://ai-innovation.team/

ABSTRACT

Large language models (LLMs) often struggle to answer questions grounded in
complex, domain-specific codebases, especially when deployed in private envi-
ronments using smaller, open-weight models. These limitations arise from insuf-
ficient context understanding, weak reasoning capabilities, and a lack of alignment
with specialized terminology or architecture. In this work, we present a synthetic
data-driven framework for knowledge infusion using sdg_hub, an open-source tool
developed to generate high-quality, document-grounded training data.

Our method transforms curated technical documentation, including anno-
tated code, example notebooks, and code documentation, into synthetic ques-
tion—answer pairs and reasoning traces using teacher LLMs. We fine-tune Qwen
3 family models on this data.

This targeted fine-tuning approach significantly improves the model’s factual
accuracy and reasoning performance on repository-specific tasks. Our results
demonstrate that small LLMs, when properly customized, can serve as capable
domain experts, complementing RAG pipelines while operating in secure, cost-
efficient deployments.

1 INTRODUCTION

Understanding and navigating complex codebases is a core challenge for developers working with
large language models (LLMs) |Gupta et al.| (2024); Name| (2025); |[Liu et al.| (2025); |Athale &
Vaddina| (2025)). As repositories grow, with layered abstractions, custom APIs, and domain-specific
terminology, the ability to accurately answer code-grounded questions becomes critical. This has
fueled interest in codebase knowledge agents, which help answer queries by understanding the
codebase.

Yet, LLMs—especially those not fine-tuned on code—often struggle in this setting. Retrieval-
augmented generation (RAG) can surface relevant snippets, but falters when knowledge is frag-
mented or tied to implicit design patternsPinhasi|(2025));|Wang et al.|(2025)). Even accurate retrievals
may confuse general programming terms with repository-specific concepts, leading to incorrect an-
swers. These issues are magnified in domains with specialized jargon or unconventional architec-
tures.

The challenge is compounded for teams deploying small or medium-sized open-weight models
in private environments. These models are typically chosen for their affordability, on-premise de-
ployability, and transparencyRatnakar et al.|[(2025)). However, they lack the reasoning capacity and
context length of larger proprietary systems like Claude Code or Cursor. As a result, they often
struggle to synthesize information across multiple files or grasp domain-specific logic—leading to
hallucinations and brittle answers.

A promising solution is to customize these smaller models by grounding them in the target
codebaseRatnakar et al.| (2025)); [LocalLlamal (2023). One emerging approach is to generate high-
quality synthetic training data that teaches the model to internalize the repository’s structure, design
patterns, and domain terminology Yang et al.| (2024)); \Gururangan et al.| (2020); |Yao et al.| (2021);
Ovadia et al.[(2023)); Zhang et al.| (2024). We leverage sdg_hub, a modular framework for generat-
ing document-grounded QA pairs, enabling targeted fine-tuning that teaches the model repository-
specific logic and terminology.

In this work, we customize small open-weight LLLMs through knowledge fine-tuning. While
these models may not be strong generalists, we show they can become capable domain experts with
focused training.

1.1 OUR CONTRIBUTION

We present a synthetic data-driven framework for knowledge infusion using sdgjlu to generate
document-grounded QA pairs, reasoning prompts, and instruction data. We fine-tuned models from
the Qwen-3 family on a real-world repository and its documentation.

The resulting model shows improvements in factual accuracy and conceptual understanding, out-
performing the base instruct-tuned model. Crucially, our approach is complementary to RAG,
enhancing response quality even with limited context.

2 METHODOLOGY

2.1 SYNTHETIC REASONING KNOWLEDGE DATA GENERATION USING SDG_HUB

In this work, we demonstrate how to use sdg_hub for generating synthetic data to customize a large
language model (LLM) for answering codebase specific questions. sdg_hub is an open-source syn-
thetic data generation framework developed by the Red Hat AI Innovation team.

sdg_hub allows building sophisticated data generation pipelines with modular design and reusable
components. A typical data generation workflow is defined using three components:

* Blocks: Modular units for data transformation or teacher prompting.

* Prompts: Custom or pre-built templates guiding model behavior within blocks.

* Flows: Declarative YAML specifications chaining blocks into multi-stage pipelines.

2.2 DOCUMENT CURATION

We curated two key resources to provide domain-specific context for training:
(1) Documents — primary knowledge sources such as code files, tutorials, and documentation

(2) Document Outlines — brief summaries describing each document’s/set of documents content
and purpose, giving teacher model extra context.

Our training corpus included:

Codebase files: Each script was thoroughly annotated with detailed docstrings for functions, inline
comments for clarity, and high-level summaries describing overall logic and design. Where appli-
cable, we also included architectural notes explaining interactions between modules and classes.

Example notebooks: Notebooks showing how to use existing flows and creating custom flows. All
notebooks were annotated and converted to Markdown using an open-source tool.

Documentation and transcripts: We incorporated README files, code documentation, and sup-
plementary materials such as presentation slides and talk transcripts. All transcripts were manually
cleaned and verified for clarity and relevance.

2.3 KNOWLEDGE DATA GENERATION

We used the sdg_hub pipeline to convert raw documents into training data. Instead of using full
documents directly, we prompted a teacher model to generate targeted augmentations: key facts,
summaries, and extractive overviews, which improved memorization during fine-tuningAllen-Zhu
& Li/(2024); |Yang et al.[(2024).

These augmentations were then converted into question—answer pairs, with the teacher model pro-
ducing both questions and grounded answers. To maintain quality, the pipeline filtered ungrounded

! Github: https://github.com/Red-Hat-Al-Innovation-Team/sdg_hub

QA pairs. We also generated reasoning traces for each QA pair using a reasoning-focused teacher
model (Qwen 3 32B), enabling the fine-tuned model to also learn reasoning process while generating
the response.

2.4 DATA POST-PROCESSING

We do several steps of post-processing for getting the data ready for training. Each training sample
combined the (augmented) document with a query, and the model was prompted to generate both a
reasoning trace and final answer, in the format:

<document>
<query>

<reasoning_trace>
<final_answer>

To reduce overfitting on the document we only include maximum 3 QA pairs per document.

This was wrapped in Qwen’s chat-style format using role-specific tags (e.g., system, user, assistant)
to ensure compatibility with its tokenizer and prompt-handling logic.

2.5 FINE-TUNING PROCESS

We fine-tuned models from the Qwen 3 family, specifically the 32B and 8B variants, chosen for their
strong reasoning capabilities and support for tool use. Rather than following traditional instruction
tuning, which typically masks out the prompt and backpropagates only on the model’s response, we
adopted a modified strategy to support deeper knowledge infusion.

In our approach, we masked only the special tokens in the system and chat template (e.g.,
<|system]|>), allowing gradients to flow through the document, the query, the reasoning trace,
and the final answer. This configuration ensured the model not only learned how to respond but also
learned representations of the underlying documents and logic, leading to improved factual accuracy
and contextual grounding.

3 EVALUATION AND RESULTS

To assess the effectiveness of our synthetic data generation and fine-tuning approach, we conducted
both human evaluation and benchmark-based evaluation. Our goal was to measure the model’s
ability to correctly answer repository-specific questions, both in a closed-book (pure generation) and
open-book (RAG-augmented) setting.

3.1 HUMAN EVALUATION

To assess the model’s understanding of the target code repository, we manually constructed ques-
tion—answer (QA) pairs designed to probe a range of repository comprehension skills, including
code-level details, architectural patterns, and practical usage scenarios.

Each question was paired with its most relevant document segment using a retriever, enabling eval-
uation in a simulated retrieval-augmented generation (RAG) setup. This allowed us to compare the
model’s performance in both a closed-book setting (no context provided) and an open-book setting
(with retrieved context).

We used GPT-4 as an LLM-based evaluator, comparing model responses against reference answers.
The evaluation prompt instructed GPT-4 to assess factual accuracy, faithfulness to the reference, and
the presence of hallucinations. Responses were rated on a 1-5 scale, where 5 denoted a fully correct
and well-grounded answer, and 1 indicated a completely incorrect or hallucinated response.

As shown in Figure [I] our customized models outperformed the base instruct models across both
evaluation modes. Notably, performance gains were consistent across both the 8B and 32B model

Human Evaluation Accuracy on sdg_hub

120
113

102
100
83 24
80
&3 84
]
a0
20
0

Qwen-3 8B Qwen-3 8B Customized Qwen-3 328 Qwen-3 328 Customized

111
104

m Closed Book Open Book

Figure 1: Results of Knowledge Tuning on Codebase QA. We fine-tuned Qwen-8B and Qwen-32B
on the sdg_hub codebase and its documentation. The models were evaluated on handcrafted QA
pairs using GPT-4 as an LLM judge, with human verification. Evaluation was conducted in both
closed-book (query only) and open-book (query + retrieved context) settings.)

sizes, with particularly strong improvements in the open-book setting where access to retrieved
context reduced hallucinations and improved factual grounding.

These results confirm that our approach leads to substantive improvements in the model’s under-
standing—not just more fluent responses, but more accurate, faithful, and context-aware answers.

3.2 QUALITATIVE EXAMPLES

To complement our quantitative results, we examined qualitative examples comparing model re-
sponses before and after fine-tuning. Prior to tuning, the base model often produced generic or
partially incorrect answers, struggling to capture repository-specific details.

After fine-tuning, responses were notably more accurate, better grounded in the codebase, and struc-
tured with clearer reasoning. The model could explain interactions between components and fol-
lowed domain conventions more reliably. Reasoning traces also improved the logical flow of an-
swers, making them easier to interpret.

These examples highlight how synthetic knowledge and reasoning data can enhance model faithful-
ness and domain alignment in complex technical settings.

4 CONCLUSION

In this work we demonstrated how small open-weight LLMs can be effectively customized to un-
derstand complex codebases through targeted fine-tuning with synthetic knowledge and reasoning
data. Using sdg_hub, we generated high-quality, document-grounded training examples from cu-
rated repository materials and used them to fine-tune Qwen-3 models. The resulting models showed
substantial improvements in factual accuracy and contextual reasoning, even in challenging closed-
book settings. Our approach offers a practical, scalable path toward building domain-specific devel-
oper assistants using affordable, secure LLM:s.

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction, 2024. URL https://arxiv.org/abs/2309.14316.

https://arxiv.org/abs/2309.14316

Mihir Athale and Vishal Vaddina. Knowledge graph based repository-level code generation, 2025.
URLhttps://arxiv.org/abs/2505.14394.

Tanmay Gupta, Luca Weihs, and Aniruddha Kembhavi. Codenav: Beyond tool-use to using real-
world codebases with 1lm agents, 2024. URL https://arxiv.org/abs/2406.12276l

Suchin Gururangan, Ana Marasovié, Swabha Swayamdipta, Kyle Lo, 1z Beltagy, Doug Downey,
and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks, 2020.
URLhttps://arxiv.org/abs/2004.10964.

Xiangyan Liu, Bo Lan, Zhiyuan Hu, Yang Liu, Zhicheng Zhang, Fei Wang, Michael Qizhe Shieh,
and Wenmeng Zhou. CodexGraph: Bridging large language models and code repositories via
code graph databases. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of
the 2025 Conference of the Nations of the Americas Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 142-160,
Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-
8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.7. URL https://aclanthology.org/
2025.naacl-1long.7/.

LocallLlama. Some lessons learned from building a fine tuned model + rag question answering
app, February 2023. URL https://www.reddit.com/r/LocallLLaMA/comments/
1686ul6/some_lessons_learned_from_building_a_fine_tuned/?utm_
source=chatgpt . com. reddit post.

Author Name. Rag codebase 1, February 2025. URL https://blog.lancedb.com/
rag-codebase—1. LanceDB Blog.

Oded Ovadia, Meni Brief, Moshik Mishaeli, and Oren Elisha. Fine-tuning or retrieval? comparing
knowledge injection in llms. In Conference on Empirical Methods in Natural Language Process-
ing,2023. URL https://api.semanticscholar.org/CorpusID:266162497.

Assaf Pinhasi. Evaluating rag for codebase, February 2025. URL https://www.godo.
ai/blog/evaluating-rag-for—-large—-scale—codebases/?utm_source=
chatgpt .com. qodo Blog.

Shivam Ratnakar, Abhiroop Talasila, Raghav Chamadiya, Nikhil Agarwal, and Vinayak K Doifode.
Beyond qa pairs: Assessing parameter-efficient fine-tuning for fact embedding in 1lms, 2025.
URLhttps://arxiv.org/abs/2503.01131.

Chaozheng Wang, Zezhou Yang, Shuzheng Gao, Cuiyun Gao, Ting Peng, Hailiang Huang, Yuetang
Deng, and Michael Lyu. Rag or fine-tuning? a comparative study on lcms-based code completion
in industry, 2025. URL https://arxiv.org/abs/2505.15179l

Zitong Yang, Neil Band, Shuangping Li, Emmanuel Candes, and Tatsunori Hashimoto. Synthetic
continued pretraining, 2024. URL https://arxiv.org/abs/2409.07431,

Yunzhi Yao, Shaohan Huang, Wenhui Wang, Li Dong, and Furu Wei. Adapt-and-distill: Developing
small, fast and effective pretrained language models for domains. In Chengqing Zong, Fei Xia,
Wenjie Li, and Roberto Navigli (eds.), Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pp. 460-470, Online, August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.findings-acl.40. URL https://aclanthology.org/2021.
findings—-acl.40/.

Tianjun Zhang, Shishir G. Patil, Naman Jain, Sheng Shen, Matei Zaharia, Ion Stoica, and Joseph E.
Gonzalez. Raft: Adapting language model to domain specific rag, 2024. URL https://
arxiv.org/abs/2403.10131.

https://arxiv.org/abs/2505.14394
https://arxiv.org/abs/2406.12276
https://arxiv.org/abs/2004.10964
https://aclanthology.org/2025.naacl-long.7/
https://aclanthology.org/2025.naacl-long.7/
https://www.reddit.com/r/LocalLLaMA/comments/1686ul6/some_lessons_learned_from_building_a_fine_tuned/?utm_source=chatgpt.com
https://www.reddit.com/r/LocalLLaMA/comments/1686ul6/some_lessons_learned_from_building_a_fine_tuned/?utm_source=chatgpt.com
https://www.reddit.com/r/LocalLLaMA/comments/1686ul6/some_lessons_learned_from_building_a_fine_tuned/?utm_source=chatgpt.com
https://blog.lancedb.com/rag-codebase-1
https://blog.lancedb.com/rag-codebase-1
https://api.semanticscholar.org/CorpusID:266162497
https://www.qodo.ai/blog/evaluating-rag-for-large-scale-codebases/?utm_source=chatgpt.com
https://www.qodo.ai/blog/evaluating-rag-for-large-scale-codebases/?utm_source=chatgpt.com
https://www.qodo.ai/blog/evaluating-rag-for-large-scale-codebases/?utm_source=chatgpt.com
https://arxiv.org/abs/2503.01131
https://arxiv.org/abs/2505.15179
https://arxiv.org/abs/2409.07431
https://aclanthology.org/2021.findings-acl.40/
https://aclanthology.org/2021.findings-acl.40/
https://arxiv.org/abs/2403.10131
https://arxiv.org/abs/2403.10131

	Introduction
	Our Contribution

	Methodology
	Synthetic Reasoning Knowledge Data Generation Using sdg_hub
	Document Curation
	Knowledge Data Generation
	Data Post-Processing
	Fine-Tuning Process

	Evaluation and Results
	Human Evaluation
	Qualitative Examples

	Conclusion

